Autoionization of Water

- 1. Because water is an amphoteric substance, meaning it can be both acidic and basic; thus it is able to autoionize.
- 2. What is autoionization?

$$\stackrel{H \to O}{\underset{H}{\overset{\bigcup}{\longrightarrow}}} \stackrel{Q \not \in H}{\underset{H}{\overset{\bigcup}{\longrightarrow}}} \not \in \left[\stackrel{H \to O - H}{\underset{H}{\overset{\top}{\longrightarrow}}} \right]^{+} + \left[\stackrel{[O - H]}{\underset{H}{\overset{\top}{\longrightarrow}}} \right]^{-}$$

Don't work about the mechanics of what you see above. Just take notice of the fact that both reactants are water. One molecule is taking an H^+ (behaving like a base) and the other is losing the H^+ (behaving like an acid). Essentially water is able to react with itself. For every one hydronium formed there is also a hydroxide – hence water being a neutral (pH=7) substance.

$$2H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + OH_{(aq)}$$

The above is the reaction written in equation format. Just as with acids however, the reaction is simplified to

$$H_2O_{(l)} \rightleftharpoons H^+_{(aq)} + OH_{(aq)}$$

3. What is K_w ?

K_w is the equilibrium constant for the autoionization of water.

$$[H^+]$$
 [⁻OH] = $K_w = 1.0 \times 10^{-14}$

4. Given that the K_w of pure water at 40°C is 2.29 x 10⁻¹⁴. Calculate the $[H^+]$.

> Because we are looking at pure water we know that $[H^+] = [^-OH] = x$, where x is equal to the concentration value of H^+ and ^-OH . We also know that for all aqueous solutions $[H^+][^-OH] = K_w$ If we combine these facts we get the following equation:

$$(x)(x) = 2.29 \times 10^{-14} = x^2$$

Solving for x we get:

$$[H^+] = x = 1.51 \times 10^{-7} M$$